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Abstract

A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004)

775–799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal

growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10

(2–3) (2002) 121–136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical pre-

dictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165–170] and with recent experimental measurements

of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14–18, 2004, pp. 277–288; European

Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy

and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a stan-

dard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the

diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed

for a finite difference method and for an adaptive finite element method in comparison.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Crystal growth phenomena and the shapes of growing crystals are of fundamental interest to physicists

and are of practical importance to engineers [6]. Within the field of investigating solidification processes, a
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.01.018

* Corresponding author. Fax: +49 721 925 2361.

E-mail addresses: britta.nestler@fh-karlsruhe.de (B. Nestler), denis.danilov@fh-karlsruhe.de (D. Danilov), peter.galenko@dlr.de

(P. Galenko).

mailto:britta.nestler@fh-karlsruhe.de
mailto:denis.danilov@fh-karlsruhe.de
mailto:peter.galenko@dlr.de


222 B. Nestler et al. / Journal of Computational Physics 207 (2005) 221–239
great progress has been made in the past. However, several fundamental problems still remain unsolved.

One of the open questions is a quantitative modelling of crystal growth in a wide spectrum of undercoolings

and of solidification velocities (see [7] and references therein).

In order to model and numerically simulate crystal growth processes in 3D under various solidification

conditions, we apply a diffuse interface formulation for solidification that is based on the phase-field meth-
odology. The first phase-field models were suggested about twenty years ago in [8–11]. The formulation was

further developed to describe phase transitions in condensed media with diffuse phase boundaries by

Penrose and Fife [12]. Nowadays, the phase-field method has emerged as a powerful tool that enables

the modelling of complex pattern formations for the first time. The concept has been validated by compar-

ison with theoretical predictions and experimental measurements and is applied to a broad range of inves-

tigations in materials science [13].

In contrast to sharp interface approaches with interfaces of zero thickness, the phase-field model

introduces a new smooth variable /ð~x; tÞ replacing the sharp interface by a diffuse interface profile.
In the diffuse interface formulation, the phase field /ð~x; tÞ has a constant value within the bulk phases,

e.g., /ð~x; tÞ ¼ 0 in the liquid and /ð~x; tÞ ¼ 1 in the solid phase. In regions of phase boundaries, the

phase field /ð~x; tÞ changes steeply but smoothly from 0 to 1. The position of the interface is located

at /ð~x; tÞ ¼ 1=2. The diffuse profile enables to avoid the explicit tracking of the interface. Consequently,

the phase field / is considered as an order parameter which is introduced to describe the moving inter-

facial boundary between unstable and stable phases during phase transformation processes. By asymp-

totic expansions, it can be shown that the phase-field methods relate to classical sharp interface models

such as Hele–Shaw type models and Stefan problems in the limit of zero interfacial thickness, e.g. [14].
Beginning from the work of Kobayashi [15], phase-field models have been applied to dendritic patterns

in pure metals and in binary alloy solidification at small and moderate undercoolings (see details in the

overview [16]). However, a quantitative comparison of simulated crystal patterns with experimental

findings and theoretical predictions has only recently been started. Further evaluation of the modelling

results obtained using the phase-field method in comparison with experimental data and, especially,

with analytical solutions from the theory of crystal growth is one of the actual problems of computa-

tional physics in materials science.

In this paper, we apply the phase-field model formulated for multiphase and multicomponent solidifica-
tion [1] to crystal growth in a pure substance and relate this model to the thin interface approximation by

Bragard et al. [2]. The convergence behaviour of the ‘‘standard’’ phase-field model in comparison with the

‘‘thin interface’’ solution is analyzed for planar front growth. A finite difference and a finite element discret-

ization for solving the evolution equations is proposed and the influence of the numerical grid on the struc-

ture formation is examined for both methods. The general accuracy of the numerical methods that can be

expected for investigating dendritic crystal growth from undercooled melt will be discussed. Quantitatively,

the dendrite tip velocities and the dendrite tip radii are evaluated within a wide range of undercoolings and

growth velocities. Subsequently, the phase-field simulations of dendritic solidification in 2D and 3D are
compared with analytical results by Brener [3] and with recent experimental observations summarized in

[4,5]. Finally, a variety of 3D morphologies predicted by phase-field simulations is presented showing

grained, dendritic, fractal and globular (spherical) shapes.
2. Phase-field modelling

2.1. General model equations

For our numerical simulations, we use the phase-field model that has recently been proposed by Garcke,

Nestler and Stinner [1]. This model is consistent with classical irreversible thermodynamics and describes
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phase transformations in non-isothermal multicomponent and multiphase systems. The formulation is

based on an entropy density functional
Sðe; c;/Þ ¼
Z
X

sðe; c;/Þ � eað/;r/Þ þ 1

e
wð/Þ

� �� �
dx: ð1Þ
For general alloy systems with K components and N phases, the bulk entropy density s depends on the

concentrations of the components cð~x; tÞ ¼ ðckð~x; tÞÞk¼1;...;K , on the phase-field variables /ð~x; tÞ ¼
ð/að~x; tÞÞa¼1;...;N and on the inner energy density e. The variable /að~x; tÞ denotes the local fraction
of phase a. The contributions a(/,$/) and w(/) of the entropy functional reflect the thermodynamics of

the interfaces and e is a small length scale parameter related to the thickness of the diffuse interface.

For modelling dendritic growth from an undercooled pure substance, the system of variables reduces to

one component c = 1 and to two phase fields /1 (solid) and /2 (liquid). Since the variables fulfill the con-

straint /1 + /2 = 1, a single phase-field variable / = /1 is sufficient to describe the evolution of the phase

boundaries in the system. The set of governing equations for the energy conservation and for the non-

conserved phase-field variable / can be derived from Eq. (1) by taking the functional derivatives dS=de
and dS=d/ in the following form
oe
ot

¼ �r � L00ðT ;/Þr
dS
de

� �
; energy conservation; ð2Þ

xe
o/
ot

¼ dS
d/

; phase-field equation; ð3Þ
where x is a kinetic mobility. In the case of anisotropic kinetics, x is a function of $/ and, hence, depends
on the orientation of the phase boundary. r � fL00ðT ;/ÞrðdS=deÞg denotes a divergence operator. The

mobility coefficient L00(T,/) is related to the heat conductivity j(/). For simplicity, we assume j to be con-

stant j(/) = j and write L00 = jT2. We make the ansatz e = �DHp(/) + cvT with a latent heat DH and a

constant specific heat cv. Since dS=de ¼ T�1 for pure substances, we obtain from Eq. (2) the governing

equation for the temperature T. This yields
oT
ot

¼ ar2T þ TQ

opð/Þ
ot

; ð4Þ
where a = j/cv is the thermal diffusivity and TQ = DH/cv is the adiabatic temperature. From Eq. (3), the

phase-field equation follows by using the thermodynamic relation e = f + Ts
xe
o/
ot

¼ er � a;r/ðr/Þ � 1

e
w;/ð/Þ �

f;/ðT ;/Þ
T

; ð5Þ
where a,$/, w,/ and f,/ denotes the partial derivative with respect to $/ and /, respectively. The free energy
densities are expressed as
wð/Þ ¼ cmgð/Þ; double well potential; ð6Þ

f ðT ;/Þ ¼ DH
T � TM

TM

pð/Þ; bulk free energy density; ð7Þ

aðr/Þ ¼ c
m
a2cðr/Þjr/j2; gradient energy density; ð8Þ
where TM is the melting temperature, c defines the surface entropy value of the solid–liquid interface and m

is a mobility parameter. The polynomial functions g(/) and p(/) are given by
gð/Þ ¼ �1
2
ð2/� 1Þ2 þ 1

4
ð2/� 1Þ4; ð9Þ
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pð/Þ ¼ ð2/� 1Þ � 2
3
ð2/� 1Þ3 þ 1

5
ð2/� 1Þ5: ð10Þ
The anisotropy of the surface energy is realized by the factor ac($/) and we assume consistency with an

underlying cubic symmetry of the material
acðr/Þ ¼ 1� 3�c þ 4�c
1

jr/j4
X
i

o/
oxi

� �4

; ð11Þ
where �c is the magnitude of the capillary anisotropy and o/oxi is the partial derivative with respect to the

Cartesian coordinate axis xi, i = 1, 2, 3. Taking the derivatives a,$/, w,/ and f,/ of the energy densities in

Eqs. (6) and (8), the phase-field Eq. (5) reads
2xe2
o/
ot

¼ 2ce2

m
rða2cr/Þ þ

X
i

o

oxi
jr/j2ac

oac
oðoxi/Þ

� � !
� cm

dgð/Þ
d/

� eDH
T � TM

TTM

dpð/Þ
d/

: ð12Þ
The anisotropy of the interface kinetics can be introduced by x depending on the vector $/ in an anal-
ogous way as in Eq. (11) for the surface energy.
2.2. Relation to the thin interface model

In this section, we derive the relation between the phase-field model given by Eqs. (4) and (12) and the

model proposed by Bragard et al. [2]. First, we introduce a dimensionless temperature u and a new phase-

field variable w rescaled with a transition �1 6 w 6 1 by
u ¼ T � TM

TQ

and w ¼ 2/� 1:
With these definitions, the polynomial functions g(w) and p(w) in Eqs. (9) and (10) rewrite to
gðwÞ ¼ �w2

2
þ w4

4
; and pðwÞ ¼ w� 2w3

3
þ w5

5
:

By comparing the energy densities and the governing equations, we find the following parameter

relations between the two models:

(i) Surface entropy density c, mobility m and diffuse interface thickness e:
c ¼
ffiffiffi
2

p

a1

r0

TM

; m ¼ 1

c
; and e ¼ a1TM

r0

W 0; ð13Þ
where r0 is the surface tension and a1 ¼ 5
ffiffiffi
2

p
=8 is a constant parameter computed in [17].

(ii) Kinetic coefficient s($w) and time scaling factor s0:
xe2

2
¼ sðrwÞ ¼ s0acðrwÞakðrwÞ 1þ a2

kd0

ab0

acðrwÞ
akðrwÞ

� �
; ð14Þ

with s0 ¼
b0k

2d0

a21
; ð15Þ

where b0 = 1/(lTQ) with a kinetic coefficient l and a2 = 0.6267 is a dimensionless model constant

depending only on the choice of the functions g(/) and p(/) in Eqs. (5)–(8) and, for our case, it

has been computed in [17]. Similarly as in Eq. (11), the factor ak can depend on $w in order to
model kinetic anisotropy, such that
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akðrwÞ ¼ 1þ 3�k � 4�k
1

jrwj4
X
i

ow
oxi

� �4

:

(iii) Microscopic capillary length d0 and coupling parameter k in the free energy functions:
d0 ¼
r0TMcv
DH 2

¼ a1
W 0

k
; and k ¼ eDHTQ

T 2
M

¼ eDH 2

cvT 2
M

: ð16Þ
Using Eqs. (13)–(16) and the approximations
TQu
TM

� 1 and
u

1þ TQu
TM

’ u;
we obtain the governing equations
ou
ot

¼ ar2uþ 1

2

opðwÞ
ot

; ð17Þ

s
ow
ot

¼ W 2
0rða2crwÞ þ W 2

0

X
i

o

oxi
jrwj2ac

oac
oðoxiwÞ

� �
� ogðwÞ

ow
� ku

opðwÞ
ow

: ð18Þ
Here, we have used the ‘‘thin interface’’ (a2 6¼ 0) analysis of the phase-field model developed by Karma

and Rappel [17] in which the interface thickness W0 is assumed to be small compared to the scale of

the crystal pattern, but larger than the microscopic capillary length d0. The thin interface limit is suited
for quantitative modelling of dendritic growth in pure materials at low undercoolings in conjunction

with efficient numerical algorithms [18]. Bragard et al. [2] presented phase-field simulations by means

of the version of the thin interface analysis [17] extended for numerical investigations of pattern forma-

tions for both small and high undercoolings in pure systems. In their article, the authors point out the

necessity of introducing a nonlinear function h(ku) to the phase-field equation to recover the linear rela-

tionship between the growth rate and the interface undercooling. The nonlinear function h(ku) can be

considered as a renormalization of the driving force of the free energy. This renormalization depends

on the choice of the interface thickness in a nonlinear way. Therefore, the bulk free energy densities
are changed with varying interface thickness. The introduction of the renormalization function h(ku)
cannot be derived from a fundamental thermodynamical potential, but it enables the use of interface

thicknesses suitable for phase-field simulations. The corresponding evolution equation for the phase

field reads
s
ow
ot

¼ W 2
0rða2crwÞ þ W 2

0

X
i

o

oxi
jrwj2ac

oac
oðoxiwÞ

� �
� ogðwÞ

ow
� hðkuÞ opðwÞ

ow
: ð19Þ
2.3. Material and model parameters

The system of governing equations for the evolution of the temperature and of the phase field (Eqs. (4)

and (12)) can be used to quantitatively model dendritic growth and morphological transformations. Exper-

imentally measured material constants are inserted into the phase-field model. Thermophysical properties

for pure nickel have been obtained by Barth et al. [19] using calorimetric methods in the metastable regime

of an undercooled melt. The results have been tested by Eckler and Schwarz [20,21] in a number of verifi-

cations of the sharp interface models in comparison with the experimental data. The values of surface



Table 1

Two sets of thermophysical material data used for the phase-field simulations of dendritic growth from a pure nickel melt

Parameter Symbol [dimension] Data set 1 [reference] Data set 2 [reference]

Melting temperature TM [K] 1728, [29] 1726, [2]

Latent heat DH [J/m3] 8.113 · 109, [19] 2.311 · 109, [2]

Specific heat cv [J/(m
3K)] 1.939 · 107, [19] 5.313 · 106, [2]

Thermal diffusivity a [m2/s] 1.2 · 10�5, [20,21] 10�5, [2]

Interfacial free energy r0 [J/m
2] 0.326, [23] 0.326, [2]

Strength of interfacial energy �c [–] 0.018, [2,23] 0.018, [2]

Growth kinetics in Æ1 0 0æ-crystallographic direction l100 [m/(sK)] 0.52, [22] 0.52, [2]

Growth kinetics in Æ1 1 0æ-crystallographic direction l110 [m/(sK)] 0.40, [22] 0.40, [2]

Table 2

Two computed sets of parameters for phase-field modelling of dendritic growth of nickel crystals derived from the two data sets in

Table 1

Parameter Symbol [dimension] Relation Data set 1 Data set 2

Adiabatic temperature TQ [K] DH/cv 418 435

Capillary length d0 [m] r0TM/(DHTQ) 1.659 · 10�10 5.56 · 10�10

Averaged kinetic coefficient b0 [s/m] ðl�1
100 þ l�1

110Þ=ð2TQÞ 5.3 · 10�3 5.084 · 10�3

Strength of the kinetic anisotropy �k [–] (l100 � l110)/(l100 + l110) 0.13 0.13
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energy, atomic attachment kinetics and their anisotropies are taken from data of atomistic simulations by

Hoyt et al. [22,23] which have been linked with the phase-field simulations for analysis of dendritic growth

in a wide range of undercoolings [2,24]. It is remarkable to note that the values for the atomic kinetics given

by atomistic simulations [22,24] are approximately four to five times lower than those predicted by the col-

lision-limited theory of interface advancing [25] which can be rather well compared with the values found

from previous molecular dynamic simulation data of Broughton et al. [26]. Also, to adjust the kinetics of
rapid dendritic growth of nickel based alloys, Galenko and Danilov [27,28] stated that the fit to experimen-

tal data is obtained only if the crystal growth kinetics is found to be a factor of five less than it is predicted

by the theory of collision-limited growth [25]. These outcomes might be explained due to a more compli-

cated behaviour of the atomic ensemble fluctuations around the interface leading to slower kinetics in com-

parison with the ideal situation considered by the collision-limited theory. Two sets of material parameters

according to different references are used for our simulations of pure nickel solidification in comparison.

The values are given in Table 1.

From these data, we computed two sets of parameters for the phase-field model in Eqs. (4) and (12) such
as the microscopic capillary length d0, the adiabatic temperature TQ, the averaged kinetic coefficient b0, and
the strength �k of the kinetic anisotropy. The values of these parameters are specified in Table 2 and used

for both, the phase-field model and the analytical solutions for the crystal growth. The tilt of the free energy

well is increased within the range k = 1–18, while decreasing the dimensionless undercooling D = (T � TM)/

TQ = 1.30–0.10. For these values of k, we determined the time scale for the phase-field kinetics from the

expression s0 ¼ k2d0b0=a
2
1 and the parameter of the interface thickness from the expression W0 = kd0/a1.
3. Numerical solving methods

The set of evolution equations are solved numerically by applying two different numerical methods: A

finite difference method (FDM) and a finite element method (FEM) with an adaptive grid generator.



B. Nestler et al. / Journal of Computational Physics 207 (2005) 221–239 227
Results obtained with both methods are presented and the influence of the grid anisotropy is investigated in

Section 5. For the computations, we introduce dimensionless variables x = x 0/Ls and t = t/ss with a space

scale Ls and a time scale ss. Further, for simplicity we assume a linear function p(w) = w in the equation

for the temperature field as in [17] and rewrite Eqs. (17) and (19) in dimensionless form
ou
ot

¼ ss
L2
s

ar2uþ 1

2

ow
ot

; ð20Þ

s
ss

ow
ot

¼ W 2
0

L2
s

rða2crwÞ þ W 2
0

L2
s

X
i

o

oxi
jrwj2ac

oac
oðoxiwÞ

� �
� ogðwÞ

ow
� hðkuÞ opðwÞ

ow
: ð21Þ
Homogeneous Neumann conditions for u and w are used at the boundaries of the rectangular compu-

tational domains. To compute the function h(ku) we used a table of numerical data obtained from the

iteration method described in [2,30].

3.1. Finite difference method

A finite difference algorithm with an explicit time marching scheme as previously described in [31] has

been implemented to solve the heat equation and the phase-field equation on a uniform numerical grid.

The 3D dendritic growth structures shown in Section 6.2 are simulated on the basis of this discretization

method. We assume equal grid spacings of the three dimensions, i.e. Dx = Dy = Dz and we introduce the

notation i, j, k for the spatial coordinates of the Cartesian origin and n for indicating the number of numer-

ical time steps. Typical values for the grid spacing Dx and for the time step Dt are Dx = 0.85 W0 and

Dt = 4.52 · 10�4s0. For space and time scaling parameters, we choose ss = s0 and Ls = W0.

3.2. Finite element method

As outlined by Provatas et al. [32], a numerical method based on an adaptive mesh refinement discret-

ization exhibits a computationally efficient technique to solve the phase-field equations describing the evo-

lution and dynamics of phase boundaries. To employ a finite element discretization, the evolution equations

for u and w are solved in a weak form with a semi-implicit time scheme. Using the same time and space

scaling as in the case of finite differences and applying homogeneous Neumann conditions at the domain

boundaries, the integral of Eqs. (20) and (21) over a domain X gives
Z
X

unþ1 � 1

2
wnþ1

� �
n dXþ as0Dt

W 2
0

Z
X
runþ1rn dX ¼

Z
X

un � 1

2
wn

� �
n dX ð22Þ
and
 Z
X

sðrwnÞ
s0

wnþ1n dXþ Dt
Z
X
a2cðrwnÞrwnþ1rn dX

¼
Z
X

sðrwnÞ
s0

wnn dX� Dt
Z
X

~N
nrn dX�

Z
X

ogðwÞ
ow

� �n

� hðkunÞ opðwÞ
ow

� �n� �
n dX

� �
; ð23Þ
where n is a test function and ~N is defined by
~N
n

i;j;k ¼ jrwj2ac
oac

oðoxwÞ
;

oac
oðoywÞ

;
oac

oðozwÞ

� �� �n

i;j;k

: ð24Þ
In this form, Eqs. (22) and (23) are discretized as a system of linear equations with respect to the implicit

terms �wn+1 and �un+1.



Fig. 1. Non-uniform adaptive grid with a finer spacing Dx2 at the diffuse solid–liquid interface and a larger spacing Dx1 away from the

interface. The inlay shows the applied mesh for resolving dendritic growth.
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To resolve the interfaces in the phase-field model, the grid spacing Dx must be smaller than the charac-

teristic interface thickness W0. On the other hand, the computational domain size L is determined by the
characteristic scale of the diffusion fields with a typical ratio of L/W0 � 102–104. To achieve high spatial

resolution only in regions of a smooth but strongly localized transition of the phase field w from �1 to

1, a local gradient indicator E is used to selectively refine or coarsen the mesh
E ¼ jrwj þ ETjrT jð Þd2; ð25Þ

where d is the diagonal of a numerical cell. The adaptive grid generator supplied by deal II [33] refines a cell

if E > Emax = 2 · 10�5, and it coarsens a cell if E < Emin = 5 · 10�6, with ET = 0.1. By this choice we obtain

d � 1=
ffiffiffiffi
E

p
. Fig. 1 illustrates the non-uniform adaptive grid with a different degree of grid fineness along the

profile of the phase-field variable. The embedded inlay gives an impression of the numerical mesh used for

computing dendrites. In the region of the diffuse interface thickness, a higher resolution is realized by a

smaller grid spacing Dx2 < Dx1.
4. Comparison of thin and sharp interface asymptotics

The application of a phase-field model for computing solidification phenomena of the order of microm-

eters is always accompanied by a discussion about the two different length scales involved in such a process.

On the one hand, the diffuse interface description of a phase-field model contains interfaces of a diffuse

thickness W0 on a micrometer scale. On the other hand, a solid–liquid interface has a real atomistic cap-
illary length d0 of the order of nanometers. Due to computing time and memory resources, simulations

of, e.g., dendritic or eutectic structures are only feasible for diffuse interface thicknesses much larger than

the atomistic scale. Within the context of this scaling problem, we investigate the ability of the two types of

asymptotics for phase-field models: The sharp interface limit as a first order asymptotic and the thin inter-

face approach as a second order asymptotic. We performed computations of a planar solid–liquid interface



Fig. 2. The simulated velocity v with respect to the analytical prediction va on the dimensionless undercooling. The simulation results

of a growing planar solid–liquid interface in pure nickel correspond to the diffuse interface thickness W0 smaller and larger than the

microscopic capillary length d0 using a standard phase-field model (a2 = 0 in Eq. (14)) (symbols: D, e), a thin interface extension

(a2 6¼ 0 in Eq. (14)) (symbols: s, h) and a thin interface formulation plus the renormalization function h(ku) (symbol: $).
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of pure nickel for the two cases W0 > d0 and W0 < d0. The simulated results are compared with the exact
analytical expression for the growth velocity va of a planar interface given by
b0va ¼ D� 1;
where D = (TM � T0)/TQ is the dimensionless initial undercooling, T0 is the temperature far from the inter-

face according to T0 = TI � TQ with TI being the temperature of the interface. To determine the analytical

values for the velocity, we use b0, TM and TQ listed in Tables 1 and 2 (data set 1). Fig. 2 shows the results of
a series of simulations for W0 = 0.43d0 < d0 and W0 = 2.34d0 > d0 using a standard and a thin interface

phase-field model in comparison. For the case W0 > d0, the thin interface solution gives a better conver-

gence than the standard phase-field model, whereas for W0 < d0, the values of the velocities are almost

the same for both asymptotics. Moreover, as expected for the case W0 > d0, it can be seen in (Fig. 2) that

the disagreement between the predictions of the numerical simulations and the sharp-interface analytical

solution reduces significantly by considering the sequence ‘‘W0 > d0, standard PFM (symbol:

4)’’ ! ‘‘W0 > d0, thin-interface PFM (symbol: s)’’ ! ‘‘W0 > d0, thin-interface PFM (symbol: 5) with

renormalization function h(ku)’’ as in Eq. (21).
5. Investigation of grid anisotropy

To analyze the influence of grid anisotropy on the shape of the structure, we have performed numerical

simulations of a stationary spherical and isotropic particle (�c = 0, �k = 0) comparing both numerical

methods: FDM and FEM. We have adjusted the parameters of the simulations according to the Gibbs–

Thomson condition so that the initial radius of a sphere is stable in size. This is equivalent to the condition
that curvature undercooling equals kinetic undercooling. The stability of the spherical particle is guarantied

(also numerically) by solving the coupled system of the temperature and phase-field equations. A small
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movement of the particle interface leads to a release or adsorption of latent heat which suppresses further

development of instability. Different radii were chosen initially and the final w = 0 isoline was interpolated.

We measured the final radius in alignment with the numerical grid denoted by R100 and at a 45� angle to the

grid denoted by R110, see Fig. 3.

From the two radii R100 and R110, we obtain an estimation for the grid anisotropy
Fig. 3.

crystal
eg ¼
R110 � R100

R110 þ R100

:

For the FDM and FEM simulation setup, we chose a computational domain size of 10�6 m, a thick-

ness of the solid–liquid interface W0 = 1.127 · 10�9 m and a grid scale Dx = 9.67 · 10�10 m. In the case of

an adaptive finite element grid, the value Dx corresponds to the smallest grid cell. We investigated the

effect of grid anisotropy for five different initial radii R0. The results are illustrated in Fig. 4. It can

be seen that the influence of grid anisotropy eg is smaller for larger initial crystals. In the considered

range of radii, the grid anisotropy eg approaches a constant value of 0.01% for increasing radii. For
smaller radii, the influence of the numerical grid and equivalently the deviation from an isotropic

spherical solid–liquid interface is more pronounced. In the computations, the grid anisotropy eg lies in

the interval 0.01–0.1% for radii R0/Dx from 100 to 550. For smaller dimensionless radii R0/Dx from

15 to 60, Karma and Rappel [17] stated a grid anisotropy of approximately 5.0%. Since the physical

anisotropies for the surface energy and for the kinetics are �c = 1.8% and �k = 13%, we conclude that

the grid anisotropy may effect the growth of a crystal at the beginning stages of solidification for small

undercoolings. In other words, the grid anisotropy has a non-negligible influence on the shape of a crys-

tal for small crystal seeds or for crystal growth at relatively small undercoolings. In the latter case, the
direction of growth is dictated by the anisotropy of the surface energy. For all other cases of crystal

growth, with dimensionless radii of a crystal greater than 100 grid spacings and with an evolution pro-

ceeding under the influence of both physical anisotropies, we expect a negligible influence of the grid

anisotropy on the shape of the crystals.

Finally, it can be noted that Bragard et al. [2] used discretization of Laplacian in the phase-field equation

by means of the 18-point formula. This allows for reaching more isotropic approximation of the crystal

shape with its lower dependence on the grid anisotropy. Therefore even smaller influence of grid anisotropy

can be expected with high-order approximation of differential operators introduced into the system of
governing equations.
Simulation setup for the investigation of grid anisotropy displaying the direction of the measured radii R100 and R110 in the

lographic directions Æ1 0 0æ and Æ1 1 0æ, respectively.



Fig. 4. Plot of the grid anisotropy eg measured for FDM and FEM simulations depending on the initial radius R0 of a spherical

isotropic crystal.
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6. Simulation of dendritic structures

The formation of dendritic structures in materials depends sensitively on the effect of both, surface

energy and kinetic anisotropy of the solid–liquid interface. In this section, we apply our numerical

methods for solving the phase-field equations (20) and (21) to model 2D and 3D dendritic crystalliza-

tion of undercooled nickel melts. In particular, we compare the simulated steady-state growth dynamics

(tip velocity) and growth characteristics (tip radii) with the analytical predictions of Brener [3]. We

additionally validate the simulated variation of growth velocity for different bulk undercoolings by a
comparison with very recent experimental measurements [4,5]. The experiments were conducted with

nickel droplets using the electromagnetic levitation technique. Furthermore, we present a spectrum of

different morphologies in 3D to demonstrate the fundamental influence of the anisotropy and of the

undercooling.

6.1. Comparison with the Brener theory and with experimental results

Efim Brener analytically investigated the effect of surface energy and kinetic anisotropy on the velocity of
growing dendrites in pure substances [3]. The author derives scaling laws for the dendrite tip velocity v and

for the dendrite tip radius R in correlation with the strength of both anisotropies. We apply the phase-field

model to solidification of pure nickel dendrites in order to compare the simulated tip velocity and the tip

radius for different undercoolings with the appropriate analytical values for nickel proposed by Brener. For

this comparison, we briefly report the relevant analytical expressions for v and for R in the presence of

anisotropic strengths:
v ¼ �
5=4
k PT

gb0

and R ¼ gR�
�7=4
c

d0

PT

; ð26Þ
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where PT = vR/(2a) is the thermal Peclet number. g and gR can be determined from analytical asymptotics

as discussed in [3,34]. Using Ivantsov�s relation, the dependences of the dimensionless undercooling D on

the thermal Peclet number PT in 2D and 3D read
Fig. 5.

in Tab

predic

The sim

solidifi
D2DðPTÞ ¼ 2
ffiffiffiffiffiffi
PT

p
expðPTÞ

Z 1

ffiffiffiffi
PT

p expð�x2Þdx; ð27Þ

D3DðPTÞ ¼ PT expðPTÞ
Z 1

PT

expð�xÞ
x

dx: ð28Þ
Consequently, the value of the Peclet number PT can be obtained for a unique undercooling D in Eqs.

(27) and (28). Herewith, the velocity v and the radius R of the dendritic tip can be determined by inserting

PT into Eq. (26). For the subsequent comparison between the analytical solution and the data from phase-

field simulations we remark the following points: Brener derived various asymptotic solutions for the

relations between the strengths of the physical anisotropies and different levels of magnitude of the Peclet

number to distinguish sluggish and fast growth kinetics. We chose the scalings for the growth regime con-
sistent with moderate and high dendrite velocities equivalent with high thermal Peclet numbers. Further-

more, the theory in [3] has originally been developed for 2D growth of dendrites. However, the scalings

of Eq. (26) can also be applied to 3D growth [35]. The only difference for 2D and 3D growth of dendrites

lies in the determination of the parameters g and gR.
For comparison of the velocity-undercooling relation in Fig. 5, we consider g to be a fitting parameter

and adjust its value corresponding to the growth velocity in 2D and 3D using the results of phase-field
Tip velocity of nickel dendrites plotted against the dimensionless undercooling D for the material parameters ‘‘data set 1’’ given

les 1 and 2. The data of 2D and 3D phase-field simulations (squares and triangles) are shown in comparison with the theoretical

tions by Brener [3] (dashed line and solid line) for fitting parameters g . 0.124 (2D) and g. 0.262 (3D) computed from Eq. (29).

ulation results are obtained from numerical solving Eqs. (20) and (21). The recently measured experimental data of pure nickel

cation (crosses) [4,5] confirm the simulation results in the undercooling range 0.4 6 D 6 0.6.
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modelling and the following approximation procedure. To determine g, we define an error criterion mea-

suring the deviation between analytical and numerically simulated predictions for the velocities v
Ev ¼
X
k

vðDkÞ � vsimk
vðDkÞ

� �2

; ð29Þ
where the sum is taken over the set of undercoolings Dk used in the simulations, and vsimk are simulated val-

ues. The fitting parameters are obtained by minimizing the error function Ev(g) with respect to g. Solving
the equation dEv/dg = 0 gives the values g . 0.124 for the 2D and g . 0.262 for the 3D data sets. Inserting

these values into the scaling Eq. (26) leads to the comparison between numerical and analytical results dis-
played in Fig. 5 for 2D and 3D growth. In addition to this, the diagram contains recent experimental mea-

surements of the velocity of dendritic solidification of pure nickel melts (reported in [4,5]).

Within a range of low and moderate undercoolings 0.3 6 D 6 0.6 and 0.15 6 D 6 0.5 the simulated tip

velocities v match well with the Brener theory in 2D and 3D, respectively.

The derivation of the Brener�s theory is based on the assumption of small Peclet numbers and small

anisotropy parameters. For high undercoolings the Peclet number is high and the anisotropy of the kinetic,

�k = 0.13, is important. Hence, the assumptions of the Brener theory cause the discrepancy between the the-

oretical predictions and the numerical results for undercoolings D P 0.6 in Fig. 5. For 3D dendrites, the
experimentally measured data also agree well with the phase-field simulations over the considered underco-

oling interval 0.4 6 D 6 0.6. For small undercoolings 0.15 6 D < 0.40, the disagreement between the exper-

imental data and the phase-field model predictions is attributed to the influence of the forced convective

flow in the droplets [5] and to tiny amounts of impurities in the ‘‘nominally pure’’ nickel samples during

the experimental procedure of measurements [4,5]. According to the analysis in [36], the convective flow

in the droplets enhances the growth velocity in the range of small undercoolings, so that the tip velocity

of the dendrites is comparable to the velocity of the liquid flow.

In Fig. 6, we illustrate the sensitivity of the a numerical velocity-undercooling results on (a) the mate-
rial parameters and on (b) the code used to perform the simulations. In particular, we compare the veloc-

ity values obtained for the data set 1 and for the data set 2 in Tables 1 and 2. Further, the deviation of

the computed values with respect to the results stated in [2] are shown. It can be seen that the underlying

thermophysical data set has a significant and pronounced influence on the computed velocity, especially

for low undercoolings (D < 0.4) whereas the implemented code shows only minor differences in the

results.

The diagram in Fig. 7 shows the simulated tip radii (open squares) in comparison with three analytical

Brener curves for different values of the fitting parameter gR in Eq. (26) and for the 2D case. The tip radius
decreases at higher undercoolings and equivalently at higher dendrite tip velocities. A deviation of the com-

puted radii with respect to the theoretical curves can be observed irrespectively of the choice of the fitting

parameter gR. We assume the discrepancy is due to the fact that the tip radius is a more sensitive parameter

for approximating an analytical derivation than a kinetic parameter such as the velocity.
6.2. Dendritic structures

In the numerical simulations in Fig. 8, we obtained a morphological spectrum of different interfacial
crystal structures for a range of undercoolings D = 0.15,. . .,1.0. The results show a transition from grained

crystals at small undercoolings D 6 0.15 to dendritic patterns at intermediate undercoolings 0.15 < D < 1.0

changing again to grained crystals at high undercoolings D P 1.0. Within the range of intermediate under-

coolings, the shape of the dendrites is dictated by the preferred crystallographic direction. For the case of

nickel, the dendrites grow in the Æ1 0 0æ direction even though both physical anisotropies act during growth

simultaneously.



Fig. 6. Simulation results of the dendritic tip velocity as a function of the undercooling for the two different data sets in Tables 1 and 2

and for different programme codes. The triangles correspond to the data set 1 and the code of the authors, the open circles correspond

to the data set 2 and the code of the authors, whereas the squares correspond to the data set 2 and the code used for the simulation

results discussed in [2].

Fig. 7. Tip radius of nickel dendrites as a function of the dimensionless undercooling D. The phase-field simulations (open squares) are

compared with the analytical theory in Eq. (26) by Brener [3] for three different fitting parameters gR and for the 2D case.
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The role of anisotropy for selecting and stabilizing dendritic structures has been studied analytically in

[37,38]. In the presence of both, surface energy and kinetic anisotropy, a stable growth mode of dendrites is

found for arbitrary undercoolings [34]. As classified in [34,39], the so-called surface tension needle crystals

occur at small and moderate undercoolings. At higher undercoolings, kinetic needle crystals grow due to



Fig. 8. Simulated morphologies for different initial undercoolings: (a) D = 0.15; (b) D = 0.25; (c) D = 0.50; (d) D = 0.75; (e) D = 0.85;

(f) D = 1.00. The material parameters used are given in Tables 1 and 2 on a numerical grid of size 4503.
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the anisotropy of the atomic kinetics. As soon as one of the anisotropies vanishes, one may expect a degen-

eration of the stable dendritic growth within the considered range of undercoolings.

Fig. 9 demonstrates the morphological spectrum of crystals modelled with a zero kinetic anisotropy

�k = 0 and with a finite anisotropy of the interfacial energy �c 6¼ 0. The structure of the branched dendritic

crystal for an undercooling of D = 0.30 is similar to the shape found with both anisotropies at a relatively
Fig. 9. Morphological spectrum of dendritic structures for different initial undercoolings: (a) D = 0.30; (b) D = 0.45; (c) D = 0.55, and

(d) D = 0.8. The computations were performed with anisotropies �k = 0 and �c = 0.018. The patterns are simulated on a grid of size

4503.
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small undercooling of D = 0.25 in Fig. 8(b). At higher undercoolings, the interfacial anisotropy does not

compensate the appearance of new branches in directions others than the preferred Æ1 0 0æ crystallo-

graphic direction, Fig. 9(b)–(d). In the simulations, we find that the onset of the transition from surface
Fig. 10. Patterns observed for zero anisotropies �c = �k = 0 on a numerical grid of size 5503. The top line shows the formation of fractal

crystals at dimensionless undercoolings: (a) D = 0.70 and (b) D = 0.80. At higher undercoolings, spherical structures occur as shown in

the bottom line: (c) D = 1.20 with no thermal noise and (d) D = 1.10 with induced thermal noise.

Fig. 11. Computed nickel dendrite using the physical data given in Tables 1 and 2. The undercooling was set to D = 0.55 and thermal

noise was induced. The computational domain has a size of 6503 numerical grid points.
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tension needle crystals to kinetic needle crystals occurs at a dimensionless undercooling of D = 0.42 for

pure nickel.

Branched crystals of fractal type develop for zero anisotropies of the surface energy �c = 0 and of the

kinetic coefficient �k = 0 as shown in Fig. 10(a)–(b). A so-called ‘‘triplet’’ consisting of three cooperating

symmetry-broken fingertips forms at the center of the fractal-like structure. Triplets may be observed in
3D instead of doublons predicted for 2D. Such triplets were first modelled as dynamically stable objects

in a 3D space using the phase-field method in [40]. We observe that the triplets disappear with a further

increasing of the undercooling. Beyond the hypercooling limit of D > 1.0, smooth spherical structures grow

as crystals without any anisotropy (see Fig. 10(c)–(d)).

It is known that stochastic noise may influence the amplitude of the side branches [41,42]. Moreover, the

noise plays a crucial role for the formation of branched crystal patterns of dendritic type [43,44]. Inclusion

of the stochastic thermodynamic noise into the phase-field formulation allows modelling of well branched

dendritic morphologies [45]. Fig. 11 displays a simulated 3D dendritic crystal with the formation of second-
ary branches in the presence of thermal noise as proposed via the thin interface analysis in [46]. The noise-

induced side branching leads to realistic dendritic structures well-known from natural observations and

from experimental studies of metallic systems.
7. Conclusions

As a starting point of our consideration, we used the phase-field model for multicomponent systems [1]
which has been reduced in Section 2 to the model for a one-component system with the thin interface

asymptotic of Bragard et al. [2]. The phase-field method was applied to simulate crystal growth structures

of a pure material in 2D and 3D at low, moderate, and high undercoolings. Finite difference method

(FDM) and adaptive finite element method (FEM) were used for solving the evolution equations of the

system. Overall, the simulation results demonstrate the unique ability of the phase-field method to simulate

solidification microstructures that are well comparable with theoretical predictions and experimental mea-

surements. As particular cases, the following conclusions can be drawn upon the evaluation of the simula-

tion results.
In numerical computations, we compared the approximation behaviour of two asymptotics: The stan-

dard phase-field and the thin interface phase-field model by investigating the dynamics of a planar

solid–liquid front at different undercoolings. The thin interface approximation has better convergence prop-

erties, in particular if the diffuse interface thickness is greater than the microscopic capillary length

(W0 > d0).

The effect of grid anisotropy is analyzed for both numerical methods: FDM and FEM. The numerical

grid has no significant influence on the structure formation if the dimensionless radius of a crystal is greater

than 100 grid spacings or the growth proceeds under the influence of surface energy and of interfacial
kinetic anisotropy.

By 2D and 3D simulations, the influence of the anisotropy and of the undercooling on the morphology,

on the dynamics and on the characteristic microstructure quantities is examined. Taking the material data

for nickel (see Tables 1 and 2), we find a good agreement between the simulated dendrite velocities and the

appropriate 2D and 3D Brener theory [3] for dimensionless undercoolings D = 0.3,. . .,0.6. Furthermore, our

simulation results of the tip velocity in 3D are consistent with recent experimental measurements [4,5] with-

in the same range of undercoolings. For the correlation between the tip radius and the undercooling, we

observe a strong difference between the Brener theory predictions and the simulation results (Fig. 7) for
the dimensionless undercoolings D > 0.3. Varying the undercooling and the contributions of the kinetic

and of the surface energy anisotropy, we presented a variety of 3D morphologies involving grained, fractal,

dendritic and spherical crystals (see Figs. 8–11).
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